

Semantic Scene Completion from a Single Depth Image

Shuran Song, Fisher Yu, Andy Zeng, Angel X. Chang, Manolis Savva and Thomas Funkhouser **Princeton University**

Motivation

Partial observation

Close the

Complete 3D structure

Semantic meaning

Goal: Semantic Scena pangletiem antic

Input: Single view depth map

Output: volumetric occupancy + semantic

Problem definition

visible surface
free space
occluded space
outside view
outside room

3D Scene

Problem definition

3D Scene

Prior work

3D Scene

surface segmentation

[Silberman *et al.*]

scene completion

[Firman *et al*.]

The object occupancy and the identity are tightly intertwined ! semantic scene completion

Object occupancy and semantic

Partial scan of common object

What is this? What's the complete shape?

a bed?

Object occupancy and semantic

What is this? What's the complete shape?

Semantic meaning

It is part of a chair!

Object occupancy and semantic

What is this? What's the complete shape?

Semantic meaning

3D context!

Chair

3D context with BIG receptive field!

Chair

Key ideas:

1. Object occupancy and the identity are tightly intertwined.

2. It is important to capture and understand 3D context with big receptive fields.

Input: Single view depth map

SSCNet

Output: Semantic scene completion

Semantic Scene Completion Network Prediction: N+1 classes empty floor **SSCNet** wall ceiling . . . chair

Input: Single view depth map

Simultaneously predict voxel occupancy and semantics classes by a single forward pass.

Output: Semantic scene completion

. . .

. . .

Encode 3D space using flipped TSDF

Semantic Scene Completion Network conv(32,1,1,1) conv(32,1,1,1) dilated (64,3,1,2 conv (128,1,1,1 conv (12,1,1,1) conv (64,3,1,1) conv (32,3,1,1) conv (64,3,1,1) conv (16,7,2,1 conv (32,3,1,1 conv (64,3,1,1 conv (64,3,1,1 conv (128,1,1, dilated (64,3,1 pooling add dilated (64 add dilated

- Compare to standard projective TSDF, flipTSDF:
 - has less viewpoint dependency
 - concentrates the strongest gradient near surface

Receptive field: 0.98 m

Normal kernel

Dilation kernel

Capturing higher-level 3D context by big receptive field

Receptive field: 2.26

Receptive field: 0.98 m

Receptive field:1.62 m

Receptive field: 2.26 m

How do we obtain training data ?

Only label visible surface

Partial observation [xiao et al.]

[Silberman et al.]

No dense volumetric ground truth with semantic labels for the complete scene.

Simple scenario [Firman et al.]

SUNCG dataset: over 40K houses

https://planner5d.com/

Synthesizing training data one floor depth

Testing on real-world data Training on SUNCG

[1] **NYU depth v2:** Nathan Silberman, Pushmeet Kohli, Derek Hoiem, Rob Fergus. Indoor Segmentation and Support Inference from RGBD Images. ECCV 2012 [2] Ground truth: Ruiqi Guo, Derek Hoiem. Support surface prediction in indoor scenes. ICCV 2013

Testing on NYU [1,2]

Comparison

Observed Surface

Comparison

Observed Surface

Shape Completion [Firman *et al.*]

Observed Surface

Missing Nightstand

Comparison

Model Retrieval+Fitting [Geiger and Wang]

Observed Surface

Comparison

SSCNet

Comparison

Observed Surface

SSCNet

sofa table tvs furn. objects

Key ideas:

1. Object occupancy and the identity are tightly intertwined.

2. It is important to capture and understand 3D context with big receptive fields.

Does joint understanding help?

Does joint understanding help?

task	scene completion w/o semantics	semantic labeling w/o completion
mpletion only	64.8	
emantic only		51.2
joint	73.0	54.2

Does a bigger receptive field help?

model/task

semantic scene completion (IoU %)

receptive field: 1 meter

Basic	Basic + Dilation	
38.0	44.3	

receptive field: 2.26 meter

What 3D context does the network learn?

What 3D context does the network learn?

Wall

furniture

Input

chair

tv/monitor

window

Semantic Scene Completion

- Semantic scene completion network, SSCNet • A large-scale synthetic scene dataset, SUNCG

Code & Data: <u>sscnet.cs.princeton.edu</u>

Semantic Scene Completion

- Semantic scene completion network, SSCNet • A large-scale synthetic scene dataset, SUNCG

Code & Data: <u>sscnet.cs.princeton.edu</u>

Semantic Scene Completion

- Semantic scene completion network, SSCNet • A large-scale synthetic scene dataset, SUNCG

Code & Data: <u>sscnet.cs.princeton.edu</u>

Does synthetic data help?

Test on NYU	NYU	SUNCG	SUNCG+NYU
semantic scene completion (IoU %)	24.7	20.2	30.5

Failure cases

Failure cases: missing fine structures

Color Image

Observed Surface

Color Image

Observed Surface

